Tractable Distributionally Robust Optimization with Data
نویسندگان
چکیده
We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalent formulation via our proposed ambiguity set, which would enable us to tractably approximate a Wasserstein-based distributionally robust optimization problem with recourse. To address a distributionally robust optimization problem with recourse, we introduce the tractable adaptive recourse scheme (TARS), which is based on the classical linear decision rule and can also be applied in situations where the recourse decisions are discrete. We demonstrate the effectiveness of the TARS in our computational study on a multi-item newsvendor problem.
منابع مشابه
Distributionally Robust Convex Optimization
Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...
متن کاملDistributionally Robust Optimization with Infinitely Constrained Ambiguity Sets
We consider a distributionally robust optimization problem where the ambiguity set of probability distributions is characterized by a tractable conic representable support set and expectation constraints. Specifically, we propose and motivate a new class of infinitely constrained ambiguity sets in which the number of expectation constraints could potentially be infinite. We show how the infinit...
متن کاملDistributionally Robust Optimization for Sequential Decision Making
The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...
متن کاملData-driven Distributionally Robust Polynomial Optimization
We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...
متن کاملConic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...
متن کامل